Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный нефтяной технический университет» Кафедра вычислительной техники и инженерной кибернетики

Отчет

Вариант 63

по лабораторной работе №1 «Программирование линейного вычислительного процесса»

Студент гр. АГдЗ-21-01		Р.Д.Тасинкамбетов	
	(подпись, дата)		
Ст. преподаватель		Р.М.Харисов.	
	(подпись, дата)		

Лабораторная работа №1 «Программирование линейного вычислительного процесса»

1. Постановка задачи

Разработать блок-схему и программу вычисления значений заданных функций ${\bf K}$ для произвольных значений исходных данных. Выполнить тестовый расчет и расчет для заданных значений исходных данных.

$$K = \sqrt[3]{x + lg(x + a)}; x = (sin^2(a^3) + cos(a))^2; a = e^{-b} + \frac{b}{2 \cdot \pi}; b = 0,87.$$

2. Анализ задачи

Для вычисления значения функции K нужно взять значение константы \mathbf{c} , последовательно вычислить значения параметра $\mathbf{\alpha}$, аргумента \mathbf{x} , функции \mathbf{K} . Исходных данных для расчета достаточно.

Для проверки корректности постановки задачи и определения ограничений на исходные данные найдём область определения и область возможных значений всех расчётных функций.

Область определения функции x = x (b) $D_x = \{b \in R, b \neq 0\}$, её возможные значения $x \in R$.

Область определения функции a = a(x, b) $D_a = \{x+b > 0\}$, её возможные значения $a \in R$.

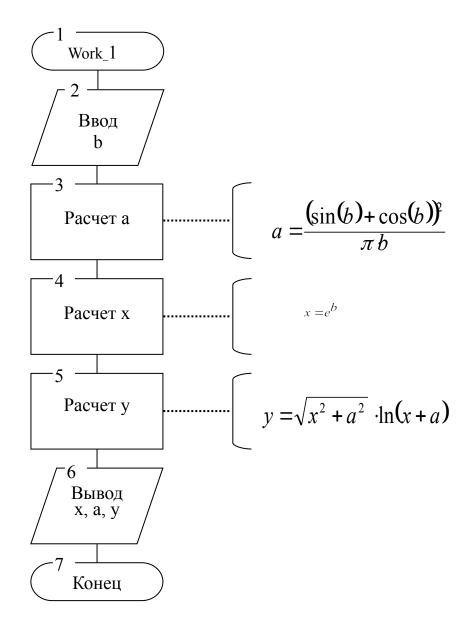
Область определения функции y = y(x, a) $D_y = \{x, a \in R\}$, её возможные значения $0 \le y \le 1 + \sqrt{2}$

Исходные данные (b =0,87) не противоречат области определения расчётных функций.

Подготовим тестовый пример для последующей проверки правильности программы (для контрольного расчёта).

Для упрощения ручного расчёта возьмем b = 0.87,.

Тогда a, $x = e^0,92=2,5093$


Используя полученные значения α и х вычислим

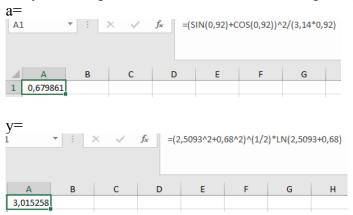
$$y = \sqrt{x^2 + a^2} \cdot \ln(x + a) = \sqrt{2,5093^2 + 0,680^2} \cdot \ln(2,5093 + 0,680) \approx 3.015$$

3. Таблица переменных

Смысл	Обозначение		Тип	
переменных	в алгоритме	в программе	переменной	Примечания
Исходные данные:				
константа	В	b	Вещественный	<i>b</i> ∈ <i>R</i> , <i>b</i> ≠0
Промежуточные				
данные:	X	x	Вещественный	x+b>0
параметр	a	a	Вещественный	$a \in R$
аргумент	a	a	Осщольсний	u e K
Результаты:				0 < 1 < 5 1
Функция	y	\parallel y	Вещественный	$0 \le y \le \sqrt{2} + 1$

4. Схема алгоритма решения задачи

5. Интерфейс программы


Ввод исходных данных запланируем в форме диалога: данные нужно будет вводить с клавиатуры при появлении соответствующего запроса на экране монитора после запуска программы.

6. Текст программы на Паскале

```
program Laba_1;
var b,a,x,y: real;
begin
  writeln('Введите b=>');
  Readln(b);
  writeln('Исходные данные');
  writeln('b=', b:4:3);
  a :=sqr(sin(b)+cos(b))/(pi*b);
  x := exp(b);
  y:=sqrt(sqr(x)+sqr(a))*(ln(x+a));
  writeln('Результаты рассчета');
  Writeln('a= ',a:4:3, 'x=', x:4:3,'y=', y:4:3);
end.
```

7. Результаты расчёта

Результаты расч33333ыёта тестового примера:

Результаты контрольного расчёта по программе совпали с результатами ручного тестового расчёта с точностью погрешности огругления до трёх цифр после запятой. Следовательно, все расчётные формулы запрограммированы правильно. Программа разработана в соответсвии с заданием.

Результаты требуемого расчёта:

```
Введите b=>
0.92
Исходные данные
b=0.920
Результаты рассчета
a= 0.680x=2.509y=3.015
```